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VI. The Waves on a Rotating Liquid Spheroid of Fimte Ellipticity.
By G. H. Bryan, B.4.
Communicated by Professor G. H. DaArwIN, F.R.S.

Received November 6,—Read November 22, 1888.

1. Tae hydrodynamical problem of finding the waves or oscillations on a gravitating
mass of liquid which, when undisturbed, is rotating as if rigid with finite angular
velocity, in the form of an ellipsoid or spheroid, was first successfully attacked by
M. PoiNcARE in 1885. In his important memoir, “ Sur Equilibre d'une Masse Fluide
animée d'un Mouvement de Rotation,”* Poincark has (§ 13) obtained the differential
equations for the oscillations of rotating liquid, and shown that, by a transformation
of projection, the determination of the oscillations of any particular period is reducible
to finding a suitable solution of LAPLACE'S equation. He then applies Lam®’s
functions to the case of the ellipsoid, showing that the differential equations are
satisfied by a series of Lami’s functions referred to a certain auxiliary ellipsoid, the
“boundary-conditions, however, involving ellipsoidal harmonics, referred to both the
auxiliary and actual fluid ellipsoid. At the same time, PoINcARE'S analysis does not
appear to admit of any definite conclusions being formed as to the nature and
frequenmes of the various periodic free waves.

The present paper contains an application of PoINCARE'S methods to the simpler
case when the fluid ellipsoid. is one of revolution (MAcLAURIN’S spheroid). The
solution is effected by the use of the ordinary tesseral or zonal harmonics applicable
to the fluid spheroid and to the auxiliary spheroid required in solving the differential
equation. The problem is thus freed from the difficulties attending the use of Lami’s

functions, and is further simplified by the fact that each independent solution contains
harmonics of only one particular degree and rank.

By substituting in the conditions to be satisfied at the surface of the spheroid we
arrive at a single boundary-equation. If we are treating the forced tides due to a
known periodic disturbing force, this equation determines their amplitude and, hence,
the elevation of the tide above the mean surface of the spheroid at any point at any
time. If there be no disturbing force, it determines the frequencies of the various
free waves determined by harmonics of given order and rank. Denoting by « the

~ratio of the frequency of the free waves to twice the frequency of rotation of the

¥ ¢ Acta Mathematica,’ vol. 7.
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188 MR. ¢ H. BRYAN ON THE WAVES ON A ROTATING

liquid about its axis, the values of x are the roots of a rational algebraic equation,
and depend only on the eccentricity of the spheroid, as well as the degree and rank
of the harmonic, while the number of different free waves depends on the degree of
the equation in x. At any instant the height of the disturbance at any point of the
surface is proportional to the corresponding surface harmonic on the spheroid, multi-
plied by the central perpendicular on the tangent plane, and is of the same form for
all waves determined by harmonics of any given degree and rank, whatever be their
frequency ; but the motions of the fluid particles in the interior will differ in nature in
every case. '

Taking first the case of zonal harmonics of the »™ degree, we find that, according
as n is even or odd, there will be 1 n or i (n 4 1) different periodic motions of the
liquid. These are essentially oscillatory in character and symmetrical about the axis
of the spheroid. TIn all but one of these the value of « is essentially less than unity,
that is, the period is greater than the time of a semi-revolution of the liquid.

Taking next the tesseral harmonics of degree n and rank s, we find that they
determine n — s -+ 2 periodic small motions. These are essentially tidal waves
rotating with various angular velocities about the axis of the spheroid, the angular
velocities of those rotating in opposite directions being in general different. All but
two of the values of k are numerically less than unity, the periods of the corresponding
tides at a point fixed relatively to the liquid being greater than the time of a semi-
revolution of the mass. The mean angular velocity of these n — s 4 2 waves is less
than that of rotation of the mass by 2/{s (n — s 4 2) } of the latter.

In the two waves determined by any sectorial harmonie, the relative motion of the
liquid particles is irrotational. The harmonics of degree 2 and rank 1 give rise to a
kind of precession, of which there are two.

I have calculated the relative frequencies of several of the principal waves on a
spheroid whose eccentricity is § /2.

The question of stability is next dealt with, it being shown that in the present
problem, in which the liquid forming the spheroid is supposed perfect, the criteria are
entirely different from the conditions of secular stability obtained by PomNcarf for
the case when the liquid possesses any amount of viscosity, and which latter depend
on the energy being a minimum. In fact, for a disturbance initially determined by
any harmonic (provided that it is symmetrical with respect to the equatorial plane,
since for unsymmetrical displacements the spheroid cannot be unstable), the limits of
eccentricity consistent with stability are wider for a perfect liquid spheroid than for
one possessing any viscosity. If we assume that the disturbed surface initially
becomes ellipsoidal, the conditions of stability found by the methods of this paper
agree with those of RIEMANN,

The case when the ellipticity and, therefore, the angular velocity are very small is
next discussed, it being shown that all but two of the waves, or all but one of the
oscillations for any particular harmonic, become unimportant, their periods increasing
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LIQU1D SPHEROID OF FINITE ELLIPTICITY. | 189

indefinitely. In the case of those whose periods remain finite for a non-rotating
spherical mass, the effect of a small angular velocity o of the liquid is to cause them
to turn round the axis with a velocity less than that of the liquid by w/n.

Finally, the methods of treating forced tides are further discussed. The general
cases of a ““semi-diurnal ” forced tide, or of permanent deformations due to constant
disturbing forces, are mentioned in connection with some peculiarities they present ;
and these are followed by examples of the determination of the forced tides due
to the presence of an attracting mass, first, when the latter moves in any orbit about
the spheroid, secondly, when it rotates uniformly about the spheroid in its equatorial
plane. The effects of such a body in destroying the equilibrium of the spheroid where
the forced tide coincides with one of the free tides form the conclusion of this paper.

Poincart’s Differential Equations for Wawes or Oscillations of Rotating Liquid.

2. Suppose a mass of gravitating liquid is in relative equilibrium when rotating as
if rigid about a fixed axis with angular velocity w, and that it is required to determine
the waves or small oscillations due to a slight disturbance of the mass.

Let the motion be referred to a set of orthogonal moving axes, of which the axis of
z Is the fixed axis of rotation, while the axes of x, y rotate about it with angular
velocity w.  In the steady or undisturbed motion the positions of the fluid particles
relative to these axes will remain fixed. In the oscillations, let U, V, W be the
small component velocities of the fluid at the point (x, ¥, z) relative to the axes. The
actual component velocities referred to axes fixed in space and-coinciding with our
axes of , 9, 2, at the time considered, will be U — wy, V 4 oz, W, and the equations
of hydrodynamics may be written *

W —o(V 4 o)+ UY +V(5 =)+ W =2 (v,~2).

az aw P
ov ov 0 P
@ FoU-a)+U(g+o)+ Ve +WE = (v,-2),
oW oW ' oW oW 0 P
o +Us +V‘a;; +WE =5 (h-2)

V, being the potential due to the attraction of the 11qu1d and any forces which may
act on it, p the pressure, and p the density.
For small disturbances we may neglect squares and products of the relative

velocities U, V, W (as is usual in wave problems), and, therefore, the above equations
reduce to :

- *Basser, ‘Hydrodynamics,” vol. 1, §23; or GREENHILL, ‘Encyclopeedia Britannica,” article “Hydro-
mechanics.”
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190 MR. G. H. BRYAN ON THE WAVES ON A ROTATING
oU oY )
w TV =y
+2wU——a;k: y (1),
oW _
ot — %)
where
1/;=V1—pl—)+;%w2(w2+y2) e (2)

‘We have also the equation of continuity,
+8J+———0 N )}
Eliminating U, V, W from equations (1), (3), we obtain the differential equation

at2V21I1—|-4w9 11’——0. e e (%),

where, as usual, v* stands for LAPLACE'S operator 0®/ox® 4 0%/0y® + 0%/02%

3. Let us now consider separately the simple harmonic oscillations of one particular
period. Assume that U, V, W, and i all vary as ¢*, so that the ratio of the period
of oscillation to the time of a complete revolution of the liquid mass about its axis is
1/2k.  The equations (1), (4) reduce to

20 (kU — V) = o,
,«1» *
20(wcV+U)=x">F . .« . . . . . (5)
20 W _88\(»
< o/
02 Vo 1\ 0%
a;’;+ ‘V+< _-;2>»;"5{-_—_0 N ()}
Put
1 9 :
1—;2=7 (7),
and
r=1 . e e e e (8).
Equation (6) now becomes
Py Py P

O
—
O
~

o T o Tom T
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. If « be greater than unity, v and, therefore, also 2’ will be real. We may take
(%, y, #) to be the coordinates of a point corresponding to the point (x, ¥, z) of the
liquid. 'We thus obtain a new region of points derivable from the original region by
homogeneous strain parallel to z or by projection. This region may be called the
auxiliary region, and the surface formed by points corresponding to points on the
fluid surface, the auxiliary surface. Our problem thus reduces to that of finding a
suitable value of s satisfying LaPLACE'S equation (9) within the space bounded by the
auxiliary surface. ‘

But we must revert to the original system in order to satisfy the boundary-
conditions, which must hold at the actual surface of the liquid, not at the auxiliary
surface. If the surface of the liquid be free, p must be constant over it, and, therefore,
the condition to be satisfied all over the disturbed surface of the liquid is

Y=V, +Lto*(@®+ %) +const. . . . . . . (10)

. In forming the expression for V, we must remember that the gravitation potential
is due to the disturbed configuration of the liquid mass.

If k be less than unity, 7 will be imaginary, and, therefore, the auxiliary surface
will also be imaginary. But the results arrived at by this method in the case
where 7 is real will still hold good even if 7 be imaginary, provided that the expression
obtained for v is a real function of the coordinates «, y, 2. The method breaks down
if k = 4 1, when 7 vanishes ; this must be treated as a limiting case.

Solution for the Spherovd by Spheroidal Harmonics.

4. Let the liquid be in the form of a MACLAURIN'S spheroid the equation of whose
surface is : ‘

-iz_l_"ya 2 4P zg_
: : A +1) " T Pcosecd x| Reotta oo (1),
so that -
{y=cota . . . . . . .o (12),

and sin a is the eccentricity of the spheroid, ¢ being the radius of its focal circle.
The locus of the corresponding point (z, ¥, ') is the auxiliary quadric

a2 + yf& 722

=1 . . . . . . . . (13

c®cosec’ « ' ¢ cot? «

This quadric will be a prolate spheroid if 7% lies between zero and cos®e, that
is, if «* lies between unity and cosec®a. If 7% is greater than cos®a, or «® greater
than cosec®«, the spheroid will be oblate. If 7% be negative, or «* less than unity,
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192 MR. G. H. BRYAN ON THE WAVES ON A ROTATING

equation (13) represents a hyperboloid of one sheet, but the part corresponding to
the liquid surface is the imaginary portion for which a® -+ 4* is less than c?cosec? «,
and 2 is negative ; this is the imaginary auxiliary spheroid. :

We shall take as our standard case-that in which equation (13) represents a
prolate auxiliary spheroid. Let it be written in the form :

2 + 2 %)
Tx—g—y—- ‘szQ =1 . . . . . . . . . (14),
B®—=1) ' Py, :
so that
' k* (v® — 1) = ¢ cosec?® a,
2 2 2 2 2
2 9 CCOa ¢ colfa. i
’ k VO —_— 7-2 —_— [cz _ 1 .
Solving for v, £, we find
K COS o

= gy e e (1)

LG)

2 g — 2
702 — 02 QOSGC o K

N ¢ ()

The solution of the differential equation (9) must be effected by means of spheroidal
harmonics applicable to the auxiliary spheroid (14), whilst the expressions for the
gravitation potential of the liquid mass and the boundary-conditions will involve
spheroidal harmonics referred to the actual liquid spheroid (11). We must, therefore,
use two different sets of orthogonal elliptic coordinates for the auxiliary and the
actual systems. Let these coordinates be denoted by (i, », ¢) (u, {, ¢) respectively,
and let them be connected with the rectangular coordinates in the two systems by
the relations

pm iy (F — 1)/ (1= i) eos = e/ (1) o/ (1= ) cos 6 )
y=hky (@*—=1) /(L =p?)sind=c/ (&4 1)/ (1 — p) sin ¢
7= kv = clu/r ' - (17).

and, therefore,

z = kvp't = ol J
The surfaces of the spheroids will be given by the equations
{= ¢, Y S (18),
or
. v=w, . . . . . . . . . . . (184);

moreover, all over these surfaces, at corresponding points,

L (19),

t
Il
<=
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The angular coordinate ¢ is the same in both systems ; but, except over the surfaces,
p will not be equal to u/, nor will any other two of the surfaces » = constant and
{ = constant coincide.

Put p’ = cos §. On transforming to (6, v, $), equation (9) becomes

8 Q‘_l’ 1 _Q . Q}_]f 1? — cos? 0 a?_«p__
Bv{(z_l) 8v}+sin0 39<Sm080>+(u2—1)sin20 PO (20),

of which a solution, finite and continuous at all points within the spheroid (14), is
g = AT ()T () eted . . . . . . . (21)

where A,’ is any constant, and

TOW) = (- (SR )
T;(v):(vz—l)”z(%yl),, W) . . .. ... (©23)

P, denoting the zonal harmonic of degree n.

In our standard case v is real and greater than unity, and in every case p’ lies
between the limits + 1 and — 1, and is real. I have adopted the above notation
(according to which the functions T,*, T, differ in form by the constant factor
(— 1)*®) in order to avoid introducing imaginary coefficients unnecessarily.*

It is easy to see that the solution (21) is applicable in every case. For, if 7% be
greater than cos® @, both & and » are purely imaginary ; whilst, if 7° be negative, we
may show that 4 will be imaginary, but » will be real and less than unity. In any
case T, (v) will be either real or purely imaginary, so that AT, (u) T, (v) can be
always made a real function of the coordinates (x, y, 2). Moreover, the right-hand
side of (21) is finite, single valued, and continuous throughout the liquid spheroid,
and satisfies the differential equation (6). It therefore only remains to investigate
the boundary-conditions which must be satisfied by ¢ at the surface of the liquid.

5. The spheroidal harmonics referred to the liquid spheroid, required for these

koundary-conditions, will be formed as follows :—
Let

pu(g)_—_‘?;”(d%”(gz_;. 1y=(— 1P, () . . . (24),

LS (g) = (Cz + ])5/2 <6_§%>°pﬂ (C) - (_ 1);1/2'_[‘”5 (LZ,) L (25),

* The tesseral harmonics may be replaced by the associated functions of the first kind of HEINE with-
out any change in the formule, the constant coefficients being supposed included in A,s.
MDCCCLXXXIX,—A. 2 ¢ ’
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194 MR. G. H. BRYAN ON THE WAVES ON A ROTATING
and let
dt .
7 (£) = pa (C)j EiDmEr (26),
ag
'Mn (C) —_ tn (C)j. (gg + 1) {t“(é’)}g . . . . . . (27).
Then the expressions
' vy = Be* e T, (u) 8,0 (0)/t (&) coee o (28),
vy = Be* e T, () u, (£)/w (L) Coe o (29),

are solutions of LAPLACE'S equation which are finite and continuous, the former
throughout the interior of the spheroid ({ = {), the latter throughout all space
outside the spheroid, and vanishing at infinity ; while at the surface ({ = {;) both

expressions become equal to
[v] = Bfem"""fe”‘i’T,,(‘) () Coe oo (80)

The Elevation of the Waves on the Surface.

6. Let & be the normal displacement at any point of the liquid surface, .e., the
height of the wave above the level of the undisturbed spheroid.

Let = be the central perpendicular on the tangent plane, and dN an element of the
outward drawn normal to the surface of the liquid spheroid (11). We readily find

dw__ Lo _ & _ &
aé"—é&_'_l:_ 8@' §2+1: aé, ¢ T T (31),

and at the surface, since the element dN is a tangent to the curve u = const.,

¢ = const. ; therefore, 2
Oz Z
(%)= () + () + &)

dN S
S EDY e

the differentials in (32) being total

Also
£+ 1
w = Cco /\/<§0?3 + #2> 2

wdN=cdl . . . . . . . . . (33)

whence,

so that
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- From equations (5) we obtain

90 (1 — 1) U = ‘”+ay A
0 0
2(0(1—K2)V=LK5\'5 8‘:/; L Coe e (34).
20 (1 — k) W = wr aa‘/’
g >

Multiplying by ox/oN, 9y/oN, 0z/oN, and adding, we find at the surface

20(1— ) (U 5% + V ok + W)
YRR (R 1)

But Udz/oN + Voy/oN 4+ Woz/oN is the normal velocity of the liquid relative to
the moving axes, and is therefore equal to oA/t or to 2wkh. We have, therefore,

4o*(1 — k*)kh

dE gl | opdy | Opd\ O Byde  dydy
(ax Tyt a;) 8N<8y ot ow ag)

d . ¢
ke, Z( © «lr_‘_ Yy «p_}_ 72z3\p> §2§0 ag [ O a\[r>

AN\G @GP+ 1) oz " F(&F + 1) ay 4P 0

lI

at z oy y 7 oy & dE o
ke IN <k2(u 2—1) 0w +lc2(u0 1) oy +k2v28z> [

— B[ e Oy
—godN{Vokzal’—foz-i-laqS} e e e e e e e e e e e (35)

Now, taking 1 as given by (21), we have

d
—:k = LSl,b N . . . . . . . . . (36) 5

moreover, since by (23)

T (v) = (»» — 1) D'P, (v),
where the symbol D stands for differentiation with respect to », therefore
DTy () = (» — 1) {D**'P, (v) + sv/(»* — 1) . D°P, ()} . . (37).

Also at the surface p’ is equal to u.
202
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196 MR. G. H. BRYAN ON THE WAVES ON A ROTATING

Hence, we find

ag
do® (1 — &%) kh = Al oy { I vo D**1P, (v,) + ]?(—F—D P, (v,) + F:l Dp, (Vo)}
X (V — 1)‘9/2 T’Z(‘V (‘U,) '-.9¢>e‘2twk;‘

e+ 1
= A/ ] S DR )+ S DR ) |

X (15 = 12 0 () et
by (15), (16).
‘Whence
h=Cgw T,9 (u) esteds . . . . . . . . (38),

where
tan?a

O)E&‘ = — A;,, 4:w21c02 {“ 12 Dst an (DO) + scos® a DJ,P” (VO)} (VO — 1)32 . (39) ;

moreover, the equation of the disturbed surface of the liquid is

C=048 - - . . . L L (40),

where

S, =how = Clmt tanaf T2 () ewets, . . . . . (1),

The Boundary-Conditions.
7. Let 'V, be the potential of a mass of the liquid filling the spheroid

(=8¢ - . . . . . . . . . . (18),

and let v be the potential of a distribution of the liquid of thickness everywhere
equal to & over the surface of the spheroid. The combination of these two distribu-
tions is equivalent to the liquid mass as disturbed by the waves, so that

V,=Vodo . . . . .. .. (42)
For the free waves, the boundary-equation (10) requires that

Y= V,+ v+ Lo®(2* + y?) + const. . L (43),

all over the surface (40). :
Now ¥, v, 6, are small quantities of the first order. Hence, expanding by
TAYLOR’s theorem, we have to first order
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[0] = [V + 40 (2 + 9)] + [0] + 84, 5, (7, + B (o + 97)} + const. (44)

where the square brackets indicate that { is to be put equal to .

In the case of forced tides due partly to small disturbing forces whose potential at
any instant is V,, and partly to periodic variations of pressure p, over the surface of
the liquid, the condition at the surface becomes :

[W]=[Vo + bo* (@ + )]+ [o] + 86 3, (Vo + $a* o + )]
_ D *
+ I:V2 p] + const. . (44%)

Equating to zero the non-periodic terms, we obtain the well-known condition for
steady motion

[Vo+ 30?2+ 9]+ const. =0 . . . . . . (45).
Here Vo=const. — 5 {A @+ )+ CF . . . . . . (46),
where
A= trpy & (& + 1), Gy = dmpy cosectacotn 58D |
C=dapy §, (& + l)f: (Fg%)—é = 4darpy cosec? « cot a 1%11—2% J|> -

y being the constant of gravitation, and being put equal to unity if the density is
expressed in astronomical units.
From (45) we have, in the usual manner,

(A= o) (@ +9) + 02 =CLR{(@+ )/ + 1) + /4 . . (48),

whence
o' = A —CL/(L + 1)
= dmpy § {8, (L) w' (&) — 2 (L (&)} - - o . . (49),

which can also be put in the form

o = dmpy § {% (30" + 1) cot ™1 ) — §4}
=dmpy g (&) - - . . . .. SR (50).

From (44%*), (45) the boundary-condition for the oscillations is

=[]+ 8 Vot bt @+ + [V = 2] . . (1)
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Now, by (48)

a
3¢, e {Vo+ 40 (a® -+ 9%}

_ wo  oyo  0z0] [+ P

= — 3043y, {ag T o¢ oy + ot az} <§02 FiT §02>
;_ 2 20 &) [ P +y 2

sy (G + DU i i) %

= — dmpy (" + 1) {Pp1 (&) 91 (&) ¢* 8Ly/=*
= — 4upy C,'c* cot @ cosec® & . p, (L) q1 (&) T () ester > .. (52).

I

8. To find v.—Suppose that the values of this potential inside and outside the
spheroid respectively are given by the formulz

v, = B e T,0 (u) 1,0 (Ot (L) - . . . . . . (28),
vy = B e T, () us (O (&) - - - - . . . (29).

Since v; v, are due to a surface distribution of surface density ph, therefore,

B a&) ovy) _ dg¢fov, oV,
-_ 47Tp'y/b = [SN] - [BN:] T dN [ 0¢ - aé’](@s"o)

— s _d_g 2wkt HLsd TV (5) Du,ﬁ (§O) —_ Dt,f (CO)
- B” dN ¢ ¢ T% ('u’) { u"ls (go) tns (gO) }

= — Bn*gb—%ez“"“e‘s‘"l‘n“’ () = {(&* + 1) 8 (&) wa' (&)}

and, therefore, at the surface, by (30)

[7)] = aneZLwaGLs-{)Tﬂ(s) ( ”)
= dapy Cc® cot acosec® o .t,° (L) wi' (&) T () eteet . . . . (53).

9. Lastly, in the forced oscillations, whatever be the variable conservative bodily
forces or surface tractions producing them, we know that it is always possible to
expand the value of [V, — p,/p] over the surface of the spheroid and at all times in a
series of the form

[V2 —-pz/p] — En = Sn = 23 =n Win, o T”(g) ('U/) 6¢s¢6chld . . . . (5 4),

k=—m =1 =0

where Wi, ,, is a constant, and the summations may extend to all possible values of «,
but only to integral values of 7 and s. The effect of each term may be considered
separately. To do this, let us take the case when there is a single term only, e., take

[V, = polp] = Wi o T,0 () e . . . . . . (55).
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Tn the waves produced the values of 7, s, x will be the same.
Substituting from (21), (52), (53), (565) in (51), we obtain

A (v? = 1) D'Py(v) + 4mpy C,fc® cot o cosec® a { py (§o) 1 (L) — °(L) wa' (§) }
':—"W‘(gn,,‘) . . (5 6).

This equation, combined with (89), suffices to determine the unknown constants
A/, G in terms of the known coeficient W¢, ,,, and thus the amplitude of the forced
oscillation is determined in terms of that of the disturbing force.

10. The most interesting point is to determine C,%, in order to find the height of
the corrugations on the surface. This plan has, moreover, the advantage that, in
considering the effect of several disturbing forces of different periods, we may add
together the elevations (k) due to the separate forces, whereas, in determining the
value of s, the terms having different periods are referred to different auxiliary
systems. Substituting for A’ in terms of C,* from (39) in (56), and writing, for

brevity, ‘ ‘
Ko (L) =p (&) (&) =t (&) i (&) - - - - . .. (57),
M = § mpc?® cot « cosec® & = mass of spheroid . . . (58),

we find, after several reductions, the required equation for C,5, viz.,

My Gy 4uq, (&) DP, (v,
__'_Z_ {Ku“ @) — 72 (&) (vo) }

s D', (v))[(k — 1) + sec? . v, D*T1P, (v)/x = Wio - (59),

in which it must be remembered that

K COS a

V0=m........(15).

The Period-Equations jfor Free Waves.

- 11. If the oscillations of the liquid be free, we must put W5, ,, equal to zero in (59),
and we therefore obtain

4xq, (cot o) D P, (v,)

K. (cot @) — 5p. 0l —1) + sePa. o, DB, pfe — 0 T (60),

which, together with (15), determines the admissible values of k and »;. In reducing
(60) to a rational algebraic equation for x we must distinguish three cases.

L Let s =0, and let n be even. Then we know that P, (»,) and DP,(»,) contain
only even and odd powers of », respectively, and, therefore, that DP, (v,) is divisible
by »,. Multiplying (60) by DP, (v))/vy, we find (writing K, for K,?)

K, (cot ) DP, (vy)/v, — 49y (cot ) (1 — k*sin®a) P, (v)) =0 . . (61).
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Expanding P, (v,) and DP, (v))/v, in powers of »,, substituting for », by means of (15),
and multiplying the resulting equation throughout by (1 — «? sin® &)"?~!, we find

4q, (cot a){(x cos a)t — 2—%%;7;——:]%—) (k cos a) =% (1 — k?sin’a) + . . . }
— nK, (cot OL)‘{(K cos a)' ™% — %;é)ﬁ(i——l-j%) (kcos a)~*(1 — k?sin?a) + . .. }

=0 . . (62).

This is a rational algebraic equation in k of the n™ degree, involving only even
powers of k. It is, therefore, satisfied by n values of k occurring in pairs corre-
sponding to 47 values of «*

II. Let s = 0, but let # be odd. Then DP, (»,) is not divisible by »,. Hence, we
must multiply the equation (60) throughout by DP, (»;) and obtain

K, (cot &) DP, (v)) — 4¢y(cot &) (1 — k?sin® &) », P, () =0 . . (63).

If this be developed in the same manner as in the preceding case, we shall obtain

4q, (cot a){(x cos o)+l — 2’%((-;’%——‘:1-% (1 cos =1 (1 — i) + . .. }
_(a—D@—2

— nK, (cot oc){(x coS a);’"l 5.0 —1)

(kcos a)*=3 (1 — k?sin®a) + . . . }
=0 . . (64)
This is satisfied by n -+ 1 values of «, but, as before, the positive and negative roots

are numerically equal, so that there will only be 4 (n + 1) different values of «*
III. Let s be different from zero. Multiplying by the expression

sD'P, (v,) + sec® o . (k — 1)/ . v, D* 1P, (vy),
we find

sec?a K¢ (cot &) (k — 1)/k . v D* 1P, (v,)
— {4g; (cot @) k (k — 1) — sK,* (cot a)}D'P,(v))=0 . . (65),

which reduces to the following equation in « —

(4g, (cot @) ik (x — 1) — sK,¢ (cot @)} {(K cos )t

(=5 (n—s—1)
2.(2n —1)

(kcos @)™ ~2(1 — k?sin®a) 4 . . . }

— (n — s)seca . K7 (cot ) (ke — 1){(,( cos o)~

=m0 o= ecosap (L = sita) L =0 (66).
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This equation is of the degree n — s+ 2, and involves both odd and even powers
of k. It therefore has n — s 4 2 roots, but in the present case these roots do not
occur in pairs of equal and opposite values.

Equations (62), (64), (66) are the period-equations of the various free harmonic
waves or oscillations of the liquid spheroid. Their roots depend on the value of « or
the eccentricity (sin «) alone. The periods of the waves are the corresponding values
of 7/wk and depend also on .

Nature of the Real Oscillations and Wawves.

12. The periodic movements determined by zonal harmonics (s = 0) and those
determined by tesseral harmonics differ in character considerably.
The former are symmetrical about the axis. Taking the solution

‘rli — AﬂPn (lu") Pﬂ (V) eﬁbmkt,
h — C% I Pn ( F‘) egwmt,

another solution got by changing the sign of « is given by

¥ = AP, (W) P, (v) e~ 2,
h=C,=mP,(n)e™ 2,

Compounding these, we get the real motions of the liquid determined by

¥ = AP, () P, (v)sin (20t — ¢,) | 67
h = C,m P, (n)sin (20t — €,) Jg cee e (),
€, being any constant.

These are stationary oscillations of the liquid about the spheroidal form. By what
has already been shown, there are either 3 or § (n + 1) such free oscillations, accord-
ing as n is even or odd. In all of these oscillations the expression for 4 is of the same
form, that is, the corrugations produced on the surface are similar in each. But this
will not be the case with the values of i, because the auxiliary systems of spheroidal
coordinates to which they are referred are different for each different value of «.
Thus, the motions of the fluid particles in the interior of the mass are different for
each of the oscillations.

18. Taking next the case when s is different from zero, let us change the sign of
v/ — 1 everywhere that it occurs in our investigations. The results will still hold
good when this is done. Hence, for every root of (66) we get two solutions of the
equations of oscillation, giving respectively

MDCCCLXXXIX.—A. 2 D
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lll e AnsTn(s) ( o“"> T”s (I/) ea(s¢+ 2‘.,,(,')’
h=CfwT,® (w) e+,

and also
45 = AnsTﬂ(s) (M/) Tns (V) e—Hsb +2w'd),
ho= O T,0 () ¢+ 20,

which combine to give the real motions

g = A, T,® ()T (v)sin (s¢ + 2wkt — ¢,) (68)
h=C =T, (u)sin (s + 2wkt — &) '

These represent a system of wawves travelling round the axis of the spheroid with
relative angular velocity — 2wx/s. But it must be remembered that the coordinate
axes to which we have referred the wave motion are themselves rotating with angular
velocity . Hence, the angular velocity of the waves in space is o (1 — 2«/s).
According to our convention, positive values of k give waves rotating more slowly than
the liquid, and vice versd.

There are n — s+ 2 such waves determined by harmonics of degree n and rank s,
and, since the values of k are not equal and opposite in pairs, these waves do not
combine into oscillations fixed relatively to the moving axes. As in the symmetrical
oscillations, the form of the corrugations is the same for all the waves, but the motion
of the fluid particles different in each.

14. If «y, kg, « « ., Ku_s4g be the roots of (66), it is obvious that

kit rke+. . ks =1 . . . . . . (69).

Hence, the mean relative angular Velomty of all the different harmonic waves of

degree n and rank s is
20)

(n—s+2)s’

in direction opposite to that of rotation of the liquid, whilst their mean actual angular

velocity in space is
2
@ {1 -Z%——S-FZ);} )

Analysis of the Period-Equations.

15. From PoINCARK'S investigations it appears that the spheroid will be secularly
stable, even if the liquid be viscous, provided that the coefficients which are here
denoted by K.’ () or

P10 ¢ (§) — & (§) wi (§)
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are positive for all values of n greater than unity.* From our equations (49), (50)

we have
— K (§) = . (0) = */(4mpy {),

so that K! ({) is essentially negative and g, ({) positive.

In accordance with this, we shall now show that, if K, ({) and g, ({) be both positive,
the roots of the period-equation for harmonic waves of degree n and rank s are all
real, and we shall find their situations.

In the first place, let us suppose s is different from zero. The period-equation (66),

as it stands, may be written
F(x) =0,
where

NF (k) = (1 — «*sin? a)# =92 {4q, (cot &) x (k — 1) — sK,’ (cot «)} D°P, (v)
_ — (1 — k*sin? a)®==D2gec o K,* (cot a) (k — 1) D'P, (v),
if we write for brevity
N=(2n)!/{2*n! (n — s)!}.
‘We know that the roots of the equation
DP,p)=0 . . . . . . . . . . (70)

are all real, and lie between + 1 and — 1; also they are separated by those of

D**1P, (v) = 0.

Let ky, &y, + « .« Ky be the values of « (taken in descending order of magnitude) corre-
sponding to the roots of (70). These values of « all lie between + 1 and — 1, also »
decreases as « decreases. Moreover, if « is put in turn equal to ky, Ky . . . K,_,, the

corresponding values of D**1P, (v) are alternately positive and negative.

We are now in a position to trace the changes in F (k) as k decreases from -+ oo
to — .

When « is greater than cosec e, v is imaginary. But F (x) when written in the
form of the left-hand side of (66) is obviously real; also when k = oo the sign of F (x)
is that of the coefficient of k*=**2. Tt is therefore positive.

When « passes through the value cosec «, » becomes infinite and then becomes real,
but F () does not in general change sign.

When k = 1, v = 1, D'P, (v) is positive, and F («) is negative.

When « = «;, F (k) is positive.

When k = «,, F (x) is negative.

When « = k3, F (k) is positive.
and so on ; thus, when « = k,_,, F («) has the same sign as Z7p=*+1,

. * We shall in future leave out the suffixes in ¢, and v, using &, » to denote the surface values, as these
surface values alone occur in the remainder of our investigations,

2D 2
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In general F (k) does not change sign when k = — cosec a, but when k = — oo
T (k) has the same sign as —7)"~**2

Hence, the equation F (k) = 0 must have one real root between each of the follow-
ing values :—

’

oo, 1, Ky, Ko, Kgy « o . Ky_gy — O,

Thus, if K, ({) is positive, all the roots of (66) are real. Let us now examine what
happens when K, ({) vanishes and becomes negative. PoINCARE proves* that, if
t,° ({) is divisible by ¢, the equation

Ks(f) =0

has no real root ; we must, therefore, have n — s even, so that ¢,’ () is not divisible
by &
When K,/ ({) vanishes, the equation
Fk)=0
reduces to
k (k — 1) (1 — k*sin®a)}®~9 DP, {kcos & (1 — x?sin® &)™} = 0,

of which the roots are
0, 1, Ky, kgy + oy Kyse

Since n — s is even, the equation

DP,(v)=0

has not zero for one of its roots. Thus, the roots of the period-equation are all real
and different. Therefore, when K, ({) changes sign and becomes negative, the period-
equation must, at any rate at first, continue to have all its roots real. If it have a
pair of complex roots, the ratio of K, (L) : g, () must not only be negative, but
numerically greater than some finite limit.

16. The roots of the period-equations for the oscillations that are symmetrical
about the axis of the spheroid are to be separated in exactly the same way. It will
be sufficient to state the results here. We suppose ky, Ky, K3, « . ., &, are the n values

of k¥ which make
P,(»)=P, {x cos & (1l — «* sin? a)7}} =0 N (41

Let n be odd. One of the above values, viz., k; 41, Will be zero, whilst x, = — &,
Keq = — Ky, and so on. Also, the ratio K, ({):g,({) must be positive. It will be
found that the period-equation (64) has one root between each of the following
values of « ;

o0, Ky, Koy Kgy + v oy K1y Oy Kymagy « » o5 Kny =™ O

* ¢ Acta Mathematica,” vol. 7, p. 326.
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If n be even, the least positive and negative roots of (71) are k%ﬂ and Ky, also
Kynp1 = — Ky 1f the ratio K, ({) : ¢, ({) be positive, we find that the positive roots
of the period-equation (62) are situated between the following values :—

OO, K].’ K2, LYY Klﬂ,

e}

while the negative ones which are equal and opposite to them are situated in the

intervals between
— 0, Ky, K”Tl’ vy Kingqy,

there being no roots between ky, and kg, 1.
When K, ({) vanishes, the roots are the n quantities

Kys Koy o v oy Kuy

none of which is equal to zero. If the ratio K, ({) : g, ({) now become negative, the
roots of (62) will at first continue to be real, being situated between the values

Kiy Koy o ooy Ky Oy Kyng 15+« o5 Kie

This will be the case until we arrive at a value of { for which the period-equation
has a pair of equal roots, each equal to zero. When this is so, we have

E®_q1¢ @ _ 1
dg,(§) — 7T DPy(v) T a(n+1)’
whence,
4 4
.Kn(C)=—97(;;:‘1—)%(@)=WK11(Z) N (4]
or

PO0O=r@6® =055 P Q0O =8 ©u O

When the ratio K, (£) : — g5 (£) or K, (£) : K;* ({) becomes greater than 4/{n (n + 1)},
two of the roots of the period-equation will become imaginary.
In every case there must be at least one positive root between each of the quantities

Kl’ Kg, e oey K%n

and corresponding negative roots, so that under no circumstances can equation (62)
have more than one pair of imaginary roots.
Numerical Solutions of the Period-Equations.

17. For a‘s'pheroid of given eccentricity, oc,v and therefore {, are known. Now, the
functions p, ({), t,° ({) can be expanded in finite terms of { in exactly the same way
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as the ordinary spherical harmonics, while g, ({), ' ({) can be expressed in finite
terms of £, cot™1{, i.e., of {, a; hence, the function K,’({) can be calculated for any
value of {* By HorNER's method we may then approximate to the values of the
roots of the equation in « in the simpler cases. The periods of the waves are the
corresponding values of #/kw, while w is expressed in terms of p by equation (50).t

To obtain some idea of the relative frequencies of the various waves, I have
tabulated the values of k thus calculated for harmonics of the second, third, and
fourth degrees for a spheroid in which { == 1 or & = #/4, the eccentricity being, there-
fore, 4 4/2. The results are embodied in the accompanying Table. As already
stated, the positive roots correspond to waves rotating more slowly than the liquid, or
relatively in the direction opposite to that of rotation of the mass, while those having
the double sign correspond to symmetrical oscillations of the liquid.

Tasres of the Values of « <= %}) for Waves on a Spheroid whose Eccentricity
= Sing = % .
Rank of Harmonic. I. Harmonics of the Second Degree.
2 (sectorial) 1'2126108, — 0-2126108.
1 1-280776,  — 0-780776.

0 (zonal) + 1:128465.
Oscillatory waves

II. Harmonics of the Third Degree.

3 (sectorial) 1'569830,  — 0'569830.
2 1677377, 0423263, — 1-100640.
1 1:6008928, 0'8267846, — 0:0733654, — 1-3543120.
0 (zonal) + 15178954, + 0:5122368.

Oscillatory waves

II1. Harmonics of the Fourth Degree.

4 (sectorial) 1:852560,  — 0-852560.
3 1-806374, 0:366650,  — 1-173024.
2 1-921878, 0:780910, — 0107365, — 1-545423.
1 1:924662, 0-890193, 0'585670,  — 0654623, — 1-745902.
0 (zonal) + 1:994751, 4+ 0-685895.

I find that the period of the symmetrical or zonal harmonic oscillation of the
second degree (in which the surface remains spheroidal) is, in this spheroid, 08599258
% «On the Expression of Spherical Harmonics of the Second Kind in a Finite Form,” ¢ Cambridge

Philosophical Proceedings,” December, 1888.
+ See THomson and Tarr’s ¢ Natural Philosophy,” vol. 2, § 772.
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of the corresponding time of oscillation in a non-rotating spherical mass of liquid of
the same density.

Sectorial Harmonic Wawes.

18. When s =n, DP, (v) is numerical, and D**'P, (v) is zero; thus, the period-
equation reduces to

dk(k—1)=nK (0)/g () . . . . . . . (73),

of which the roots are given by -
o= VO + K@ @) - - o . (79)
The condition that these roots may be real is that

Q) +aK Q>0 . . . . . . . . (75),
that is

POGO =t Qu O = p 00— Quw @)

must be positive.

These results have been obtained previously by PoINCARE in the special case in
which » = 2, but in his investigation an extraneous factor has been introduced into
the period-equation, giving a third root (k = 1) which does not properly belong to it.

The expression for ¢ in (21) is here proportional to

(1 — M’Q)%ﬂ (VQ' —_— 1)%7» e (adp + 2w:d)’

that is, in Cartesian coordinates, to

(m + Ly)” 62“‘”“,
and is independent of z. '

Thus, the motion of the liquid is “two dimensional,” and takes place in planes
parallel to the equatorial plane of the spheroid. By the laws of vortex motion the
molecular rotation or spin of the actual motion of the liquid is therefore everywhere
constant and equal to w, being that due to the rotation of the liquid. In other words,
the wave motion of the liquid relative to the rotating axes is irrotational.

Small Free Precession of the Spheroid.

19. Another case of some interest is when the harmonics determining the small
periodic relative motions are of the second degree and first rank. Putting n=2, s=1,
the period-equation (66) reduces to

4K’ (k — 1) @y (cot &) — [(k — 1) sect & + ] Kyl (cot @) =0 . . (76).
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Now, whatever the value of @ may be, x = 1 is always a root of this equation. For,
if we put k= % in the left-hand side, it becomes
= — Lq, (cot &) 4 I tan® a K,! (cot o)
=4 (K1 (9 + K (8)/8%
=3 {(&+ 1) pr(§) 0 (/8 = 01 (§) ' (8) = 151 (8) 3 (£)/ %3
! 1 1 e
— 1 (72 e —_— =
=@+ {s-primFpnlasi=0 - - (D

as was to be proved.
Substituting from the relation just found in (76), the period-equation becomes

(4k® — 4k + k) tan® o — (2 — 1) sec’ @ = 0,
or, dividing throughout by (2« — 1) tan® &, the other two roots are given by

2k? — Kk ~— cosec’ a = 0,
whence
14 /(1 + 8 cosec® a)}
14 4/(9 4883 e e e o (78).

K = %

g

P

The expression for ¥ is proportional to

(1 — p?P ' — 1) vsin (¢ + 2wkt — €),
that is, to
z {x sin (20Kt — €) 4+ y cos (2wkt — €)},

while the height of the displacement of the surface is proportional to
w 2z {x sin (2wkt — €) + y cos (2okt — €)}.

Remembering that this displacement is so small that its square may be neglected,
it can be readily shown by the usual methods of analytical geometry that, if, as is here
supposed, the ellipticity of the spheroid be finite, the displaced surface is a spheroid
of the same form and dimensions as the original spheroid, and can be obtained by
turning the latter through a small angle about the line

x sin (20t — €) + 1 cos (20Kt — €) = 0, z=0.

This will, however, no longer be true if the ellipticity of the spheroid is a small
quantity comparable with the height of the small displacement, or the surface is
spherical or nearly spherical. In such cases it will be found that the displaced surface
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is an ellipsoid, differing in form from the original spheroid by small quantities of the
first order, whose axes make finite, not small, angles with those of the spheroid.

Suppose the liquid spheroid is rotating steadily about its axis of figure with angular
velocity w, and that this axis does not quite coincide with our fixed axis of z, but is
inclined to it at a small angle, while the axes of x, y rotate about the axis of z with
angular velocity w. The coordinates of the fluid particles will now no longer be
constant, but will undergo small periodic changes. In the time 2m/w both the fluid
particles and the axes will come round to their original positions; thus, the period of
the apparent relative oscillations is 27/w, although the liquid is in reality rotating
steadily. This accounts for the root x = &, which occurs in the period-equation, a
result which may be completely verified by rigorous analytical methods,

The movements corresponding to the other two roots are somewhat similar to
precession, the axis of figure of the spheroid turning about the axis of z, to which it is
inclined at a small angle. ‘

- Stability of the Spheroid.

20. We have already alluded to PoiNcARES investigations of the condition that
the spheroid, if viscous, may be secularly stable, which requires that the energy
of the system for the given angular momentum must be a minimum in the spheroidal
form. The greatest eccentricity corresponds to the least value of ¢ which causes any
one of the coefficients K,'({) to vanish, and this is shown to be that given by
K,?({) = 0, whence, as in THOMsON and Tarr (§ 772),

1/{ = tan @ = f = 1'39457.

If the liquid be perfectly inviscid, the criteria are very different. So long as the
roots of the period-equations for the various waves and oscillations are all real, the
spheroid cannot be unstable. It will, however, become unstable if for any harmonic
the equation in x has a pair of complex or imaginary roots. For, calling these roots
[ & mi, we get the possible surface displacements

h — O”s - T”(s) (/.L) etsrbegw W+ m,)[’

= Ons = Tﬂ(s) (‘LL) G—Lsc/)e‘:vw(—zl+vm)l’
compounding into the displacement

h=Ctw T2 (u)cos (sp + 2wlt) e,

which increases indefinitely with the time.
Let us imagine that our spheroid is subject to constraints such as to freely allow of
its surface undergoing harmonic displacements of* degree n and rank s, but which
MDOCCLXXXIX.— -A. 2 E
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allow of no other displacements (such constraints are, of course, purely theoretical).
The spheroid, if at all viscous, will be secularly stable or unstable according as

Ks(0) >0 or <o,

and we have seen that the latter condition can only hold if #» — s be even, that is, if
the displacement be one symmetrical with respect to the equatorial plane. The
critical form is that in which '

K, (¢) = 0.

But since, when K,({) changes sign, the roots of the period-equation at first
continue real, the limits of eccentricity for which the perfect spheroid is * ordinarily ”
stable are in every case wider than those consistent with secular stability if the liquid
be viscid. The critical form is determined by the condition that the period-equation
must have a pair of equal roots.

In my paper on “ The Waves on a Viscous Rotating Cylinder ”* I have endeavoured
to further elucidate the difference between ¢ ordinary” and “secular” stability.
Assuming the displacement from relative equilibrium to be proportional to e~, a;
is always complex for viscous liquid, and the condition that the disturbance may
not increase with the time is that the real part of «; must be positive. Both
real and imaginary parts change sign when «; =0, the corrugations becoming
relatively fixed and the liquid figure becoming a form of “bifurcation.” Relative
equilibrium is then ecritical. ~But, if there be no viscosity, «; may be purely
imaginary, as in the present case, when « is real, and the waves will neither
increase nor diminish in amplitude Wiﬁh the time; thus, a change in the sign of
one of the roots of the period-equation merely implies a change in the relative
direction of the wave.

Moreover, it appears that the criteria of ordinary and secular stability will be
different only if the angular velocities of the waves be different in the two opposite
directions, and this can only be the case if the liquid be rotating.

Reverting to the perfect liquid spheroid, the determination of the greatest
eccentricity consistent with ordinary stability involves the question, if { be gradu-
ally diminished, what is the harmonic displacement for which the period-equation of
the waves first commences to have complex roots ¢ It appears probable that this
happens for n =2, s = 2. With this assumption, we see, by (75), that the critical
value of {is given by the equation

2 (py ()9, (0) = 18 (0) 5 (0} + 610 1 (©) — 21 (O) 7 () =0

this leads to
(804 4+ 802 4 1) cot™1 L — (833 + 7)) = 0,

* ¢ Cambridge Philosophical Proceedings,’ 1888.
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whence I find by trial and error that
1/{=tan o = f = 31414567 .. ..

This result agrees with that found by RiEMANN, who treated the problem as a special
case of the general motion of a liquid ellipsoid.

It does not, however, seem possible to justify the above assumption as to the nature
of the displacements by a perfectly general rigorous proof. The condition that the
period-equation should have a pair of equal roots is far too complicated to allow
of this point being fully proved in the way that PoiNcar# has done for secular
stability. It is certain that the spheroid will be unstable for all values of tan a
greater than 3:1414567 ; it is probable, but not certain, that it will be stable for all
values less than this limit.

Spheroids of Small Ellipticity.

21. If the eccentricity of the spheroid, and, therefore also, its angular velocity, be
small, the period-equations for the waves are much modified. The value of ¢ will
become very great, and we shall suppose it to be so great that {~2 is a small quantity
that can be neglected. Since & is small, we may put cos e = 1, sina = & = 1/{.

The function ¢, ({) is proportional to {* since the other terms in it involve only
{»=? and lower powers of {. Hence, to this approximation,

s s — [ w_(g,g"_. p— g_l'
£ Q) ws (0) = & L FE =i - - - - - (1)
and
. 1 2(n—1
K= (b= 555) =507 - - - - - (60
moreover, ‘ A
(==K =+&* . . ... .. (81),
whenee, as in THomsoN and Tarr (§ 771),
o =Fmpy ™ . . o . oL . L. (82)

Firstly, suppose that the values of « remain finite in the limit. Then v =«
ultimately, and, since g, ({) is negligible in comparison with K,*({), equation (65) gives

sD'P, (k) + (k = 1) D** 1P, (k) =0 . . . . . . (83),

having n — s real roots between 1 and — 1.
In the case of the oscillations symmetrical about the axis (s = 0) the equation for
x is ultimately -

. 1
DP,(xk)=0 or ;DP,,(K):O Coe o (84,

according as n is odd or even.
2 E2
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The frequencies of these waves or oscillations are proportional to the angular
velocity of the liquid. As the latter is diminished without limit they become
relatively unimportant, and finally cease to exist, for the limiting case of a mass of
liquid without rotation oscillating about the spherical form.

Secondly, suppose the periods of the waves remain finite in the limit. Put 20k = A,
so that 2ar/ is the period. Since A remains finite, x will increase without limit as o
diminishes, and, therefore, equation (66) gives, to the first order of small quantities,

21§5—2 Mha; - § ((;n—qull))s - fga ((znn_%lil) (n = 8)x12¢ =0,
whence, by (82),
x(x—zw)z%’;—}%}@y{l —”;8.%‘"} N 1)
If we put @ = 0, we get
X2==%;é%£i%%ﬂpy L (s6),

the well-known result for the oscillations of a liquid sphere. Denoting by A? the

expression
8n(n—1)
3 @2n +1) TP
we find ,
9 A= PN TS
M= A= A <)\ n > ’

whence, substituting A = 4+ A in the small terms, we get
M= A+Ce o (87)

Remembering the expressions found in § 13 for the relative and actual angular
velocities of the corresponding waves, this result may be stated as follows :—The effect
of communicating a small angular velocity  to a spherical mass of gravitating liquid
will be to add an angular velocity (n — 1) w/n to the angular velocities of all the free
waves which are determined by harmonics of degree . V

The symmetrical oscillations will be unaffected by rotation to this order of approxi-
mation. If we proceed to a higher approximation by taking into account small
quantities of the second order, the equations become much more complicated. But, for
a spheroid similar to the Earth, the above approximation would be practically sufficient.
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Forced Tides.

22. We now revert to the applications of the methods of this paper to the investiga-
tion of the tides produced on the surface of the spheroid by the influence of periodic
variations of pressure over the surface of the liquid, or by the attractions of disturbing
bodies in the neighbourhood of the spheroid.

In this connexion, the equations found in §§9, 10 will be required, viz., if at the
surface '

— py/p = S2ZWY, , T, () sin (s + 20kt —€,’) . . . (88),
and

h= w3350, T (u) sin (s¢p + 20kt — €,") . . . . (89),
then Ci, ,, will be given in terms of W, , by the relation

4«D°P, (v) | e .
CW) { (- sDP, (9)/(k — 1) + sec® « . yD* 1D, () 12 (g)} = Wi (90),

where, as in (12), (15),
. K COS o
Ve /A= @sina)’

(91).

and |
{=cota | J
Also, from (39), we have
My 4xD°P, (v) 45 (£) s M .
12 =7 G sD'P, (0)/(k—1) + sec?x. v DD, () = Aol () - (92):

The value of ¢ at any point of the surface being

W] = Al T () TO () sin (s + 20kt — €,7) . . . . (93),

is determined in terms of C, ,, by the last equation (92).

23. An interesting case occurs when k = 1. The period of the tides will then be
half that of a complete revolution of the liquid, and they may therefore be called
“gemidiurnal 7 with reference to the spheroid. Except in the case when s=0,
equation (90) gives

‘M(X 8 8 — s
37 V0RO =W L (94);

also, from (92), AT, (v) = 0 and, therefore, [1[;]- 0; hence, it is ev1dent that
must also vanish throughout the liquid.
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The height of the forced tides is therefore the same as we should get by the
“equilibrium theory,” t.e., by neglecting the small relative motions of the fluid
particles entirely. In fact, these relative motions have no effect on the height of the
tides. It does not follow that they do not exist; in fact, it is evident, on the conti'ary,
since the tides move relatively to the liquid, that they must exist. But on referring
to equations (34) we see that, when k=1, the small relative velocity components
U, V, W may be finite, even though s vanishes.

The zonal oscillations are, however, given by

My [ o Scostagy(d) |
3-c—on{xn(g)—m}=w,,. L (95),

since » = 1, and therefore P,(v) =1, DP,(v) = 4n(n + 1). For these oscillations
¥ does not vanish. ’ R S

24, Another interesting application is to determine the height of the permanent
corrugations produced by disturbing forces which remain constant and fixed relatively
to the rotating liquid. We now have to take k=10; therefore, v=0 and v/k = cos a.

If s is different from zero, then, whether » — s be odd or even, equation (90)
gives us

Sy KA Q=W, o o (04),

and (92) gives A, T, (v) = 0, whence [] = 0; and therefore v is everywhere zero.
If s = 0 and n is odd, then P, (0) = 0, DP,(0) is finite, and, as before, we find

3(My/) CK, (=W, . . . . . . . (94a),
a‘nd’ . . . ) .

Yy =0.

Lastly, let s = 0 and let # be even. This is the case of a harmonic disturbance
which is symmetrical both about the axis of the spheroid and also with respect to
its equatorial plane. Then, as in §16, 4vP, (v)/DP, (v) approaches the finite limit
— 4/{n(n 4 1)}, when » is diminished indefinitely, and therefore : :

341\430”{1{”(;)—%)}:\7&7” 09,
2 W en@Pa) . . . .. O]

[lp]:—n(n—l—l) ¢

In the first two cases the height of the corrugations is given by the “ equilibrium
theory,” and, since ¢ = 0, it follows from equations (34) that U, V, W are all zero.
Thus, the fluid continues to rotate as if rigid in a form differing slightly from the
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original spheroid, as we should most naturally expect. But in the last case, since y is
finite, there will be a finite relative motion of the liquid with respect to the moving
axes. That this must be the case may be seen as follows :—The spheroid is supposed
to be deformed from its original form by the action of the given conservative forces
and surface pressures. The displacement does not vanish at the equator ; hence, if we
consider the fluid particles at the surface, forming a circle round the equator, the
displacement must necessarily increase or diminish the size of this circle. By
THoMSON’S circulation theorem, the circulation in this circuit must remain the same as
before, since the liquid is supposed perfect; hence, the angular velocities of the fluid
particles in this circle must be altered, and they can no longer continue to rotate
about the axis of the spheroid with the original angular velocity w. Therefore the
disturbance must produce permanent relative motions of the liquid, unless there be
any viscosity present, in which case the mass will ultimately rotate as if rigid in the
deformed figure, and the “ equilibrium theory ” will again become applicable.

Tides due to Action of o Satellite.

25. We shall conclude by showing how to determine the forced tides due to the
presence of a small satellite of mass m revolving in any orbit about the spheroid.

If we take ¢ to be the longitude of any point on the spheroid, measured from a
plane fixed in space, with which the moving plane of (y,2) coincides at time ¢=0,
then, ¢ being the longitude measured from the latter plane, we have

F=db4ot . . . . . . . . . . (%)

Let (uy, {1, ¢1) be the spheroidal coordinates of the mass m at time ¢, ¢ being
measured from the fixed initial plane. Then, at any point (u, {, ¢') whose distance
from the mass is R, we have

Vo=my/R . . . . . . . ... (99).
Since {; > 1 /R can be expdnded in spheroidal harmonics by the formula,

1/R = 1/¢ 3~ " (2n + 1) [P, (1) pu () Pa (1) 0. (&)
+ 237 {0 =Y+ )3 TO() 6:(0) T () 1 (8) cos s (¢ — §)] (100).

Since the motion of the satellite is supposed known, (u,, {, ¢,) are known
functions of ¢ In order to complete the solution we must suppose the quantities
P, (1) 6o (), T () s (§) cos sy, amd T, () ! (£,) sin s, expanded by
Fourier’s theorem in simple harmonic functions of the time. If the period of the
satellite ‘in its orbit be 2w/L, the expansion will only involve circular functions of
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multiples of Lt. We then write ¢ -+ wt for ¢, and resolve all products of sines and
cosines involving ¢ or ¢ in terms of circular functions of sums and differences. The
expression V, will now be a triple series of the same form as in equation (88), and
the heights of the tides due to each term of the series may be determined separately
by the application of equations (89), (90).

26. Suppose that the attracting mass rotates round the spheroid in the equatorial
plane in a circle of radius ¢,/(Z* 4+ 1) with angular velocity (1 — 2/)w (veferred to
fixed axes). - _

We then have u, =0, {{ =Z, ¢, = (1 — 2]) wt, ¢’ — ¢'; = ¢ + 2lwt. Therefore

Vo =my/eX 7 (2n + 1) [P (1) 2. (O P (0) g ()
+ 22‘:7: {(n = s)l/(n + )13 T, (u) t.° (&) T (0) wi’(Z) cos s (¢ + 2lwt)] (101).
‘We have

P, (0) =0, (n odd),

(— 1)t !
v = Gt

T2 (0) = 0, (n— s odd),

00y = (T DI @k !
Tn (O) - 2”%(% + 3)!,%(77,—8)!,

(n even),

(n — s even),

so that the expansion only involves harmonics which are symmetrical with respect to
the equatorial plane.

The first term in the above expansion is a harmonic of the first degree and rank,
and determines the motion of the spheroid as-a whole about the centre of mass of the
spheroid and the attracting body. This motion can be taken separately.

Taking; in the usual way,

b= TGP, (1) + 3T OO0 () coss (4 2lot)} .. . (102),

where the summation includes only even values of # — s, we find, by the method of
§ 24,

" 3 M K,(8) —4g (O)/{nm+ D}
=(—)rd@ntn . O d (n even) . (108);

M 2" (3 K, (¢) — 4y OH{n (0 + 1)}’
also, if n — s be even,
n - sl
+8)!i(n—s

B 4is (Is — 1) g, (§) D*P, (v,) }
- { » () T SDP,(v) — (Is — 1)sec?a. v, D I, (v,) [(Is) |-

Of= (=13 @0+ D 5 it (O w2

(1 0_4),’
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where, in this case,
v,=1Iscosa(l — Ps?sin®e)™? . . .. (105),

the corresponding value of k being /s.

Equations (102), (103), (104) fully determine the height of the forced tides and
deformations on the surface of the spheroid due to the attracting body.

If, instead of one attracting mass m, we suppose two equal masses Lm on opposite
sides of the body, the expression for V,, and therefore for A, will contain only zonal
harmonics, and harmonics of even rank, but these will be the same as before.

Harmonic Tides of the Second Order.

27. If the body be very distant from the spheroid, Z will be great, and the series
(101) will converge very rapidly, so that the harmonics of the second degree are the
most important.

Taking n = 2, s = 2, we get

o b m t (Ou(2)
CELNRG-a@-na0 0 - (1)

and the corresponding term in the height of the forced tide is

o 10w (E+DurZ) 2 .
hz 4 M K22 (é») —4l(2l—1)q2(§)(1 —M)wCObZ(¢+ 2 wt) . (107)

If the attracting body be rotating in the same direction as the liquid, but with less
angular velocity (as in all cases of astronomical interest), 21 lies between 0 and 1. If,
in addition, K,? ({) is positive, the denominator in the expression for h,® cannot vanish,
and the tide produced by this term cannot therefore become very large. In fact, the
angular velocities of both the free harmonic tides will lie beyond the above-mentioned
limits, and will neither of them coincide with that of the attracting body. If,
however, K,* ({) = 0, and if, in addition, the attracting body be fixed in space, so that
91 = 1, this forced tide will increase indefinitely. The spheroid will now have a semi-
diurnal free tide, which will be fixed in space, and will coincide with the forced tide
due to the attracting body. The equilibrium in the spheroidal form will therefore be
completely broken up. '

If the attracting body be rotating very slowly about the spheroid, the same thing
will happen if K,* ({) has a certain corresponding small negative value.

Since the spheroid is secularly stable or unstable according as K,? ({) is positive or
negative, the mode in which its relative equilibrium will be destroyed if K2 )
becomes negative will depend on circumstances. If the liquid possess but little

MDCCCLXXXIX.—A. 2 F
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viscosity, the changes due to secular instability will take place very slowly, but the
effect of the tide generating force due to an attracting body when the angular velocity
of one of the free tides coincides with that of the body will become very great. If,
however, the viscosity be considerable, it will prevent the forced tides from becoming
large, and will cause the liquid to rapidly assume the form of a JacoBIAN ellipsoid,
owing to the spheroidal form being secularly unstable.

Conclusion.

28. The results of the present paper suggest several considerations, which may
possibly throw further light on the past history of the Solar system. The criteria of
stability applicable to the two cases where the spheroid is formed of perfect and of
viscous liquid respectively have been already discussed in § 20. In the last para-
graph I have alluded to the possibility that equilibrium in the spheroidal form may be
broken up by an attracting body which causes the harmonic tides of the second order
to increase indefinitely, in accordance with Professor DARWIN’S hypothesis. = -

The present analysis, however, suggests that the same thing may happen in the
case of harmonic tides of higher order than the second, and, moreover, the results
arrived at concerning the number and situation of the roots of the frequency-
equation render this hypothesis quite admissible. Except for harmonics of the second
order, many of the free tides will rotate in the same direction as the liquid, but with
less angular velocity, even though the spheroid be secularly stable; and, if an
attracting body should be rotating about the spheroid with the same angular velocity
as one of these tides, they would certainly rise to an enormous height, and the liquid
might, perhaps, ultimately be broken up into two or more detached masses.

Take; for example,'the sectorial harmonic waves of order n. If one of these be
fixed in space, we must, from § 13, have the corresponding value of « = % n, and, by
(78), this leads to the condition

K (0) = (n — 2) ¢, (&).

If n is greater than 2, this will be satisfied for some secularly stable form of the
spheroid. Under these circumstances, the presence of a fixed attracting body near
the spheroid would cause the sectorial harmonic waves of the n™ order to increase
indefinitely. The only obstacle in the way of the present supposition is that when
the distance of the attracting body is at all considerable, the harmonic components of
tide generating force of the higher orders become very small in comparison.

Another question of astronomical interest is whether a rotating spheroid can be
broken up into one or more rings of rotating liquid. This can only happen if one of
the zonal harmonic oscillations increase indefinitely or become unstable.


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LIQUID SPHEROID OF FINITE ELLIPTICITY. 219

Now, as long as the spheroid continues stable for such zonal harmonic displace-
ments when the liquid is supposed perfect, the frequencies of these oscillations will
none of them vanish ; hence, their amplitude cannot be increased indefinitely by the
attractions of bodies remaining in the equatorial plane of the spheroid ; and the only
way in which this can take place is under the influence of the tide generating force
due to a satellite whose orbit is inclined at a considerable angle to the equatorial
plane of the spheroid, the effect being greatest if their planes be perpendicular. There
is still the possibility that, contrary to our hypothesis in § 20, a perfect liquid spheroid
may first become unstable for some displacement symmetrical about the axis; and,
unless this question be fully decided, we gre not in a position to say that such is
not the case, and that LApLAcE's hypothesis is wholly unfounded.

2 F 2
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